41 research outputs found

    Extensive spontaneous plasticity of corticospinal projections after primate spinal cord injury.

    Get PDF
    Although axonal regeneration after CNS injury is limited, partial injury is frequently accompanied by extensive functional recovery. To investigate mechanisms underlying spontaneous recovery after incomplete spinal cord injury, we administered C7 spinal cord hemisections to adult rhesus monkeys and analyzed behavioral, electrophysiological and anatomical adaptations. We found marked spontaneous plasticity of corticospinal projections, with reconstitution of fully 60% of pre-lesion axon density arising from sprouting of spinal cord midline-crossing axons. This extensive anatomical recovery was associated with improvement in coordinated muscle recruitment, hand function and locomotion. These findings identify what may be the most extensive natural recovery of mammalian axonal projections after nervous system injury observed to date, highlighting an important role for primate models in translational disease research

    Tumor Necrosis Factor Alpha Mediates GABAA Receptor Trafficking to the Plasma Membrane of Spinal Cord Neurons In Vivo

    Get PDF
    The proinflammatory cytokine TNFα contributes to cell death in central nervous system (CNS) disorders by altering synaptic neurotransmission. TNFα contributes to excitotoxicity by increasing GluA2-lacking AMPA receptor (AMPAR) trafficking to the neuronal plasma membrane. In vitro, increased AMPAR on the neuronal surface after TNFα exposure is associated with a rapid internalization of GABAA receptors (GABAARs), suggesting complex timing and dose dependency of the CNS's response to TNFα. However, the effect of TNFα on GABAAR trafficking in vivo remains unclear. We assessed the effect of TNFα nanoinjection on rapid GABAAR changes in rats (N = 30) using subcellular fractionation, quantitative western blotting, and confocal microscopy. GABAAR protein levels in membrane fractions of TNFα and vehicle-treated subjects were not significantly different by Western Blot, yet high-resolution quantitative confocal imaging revealed that TNFα induces GABAAR trafficking to synapses in a dose-dependent manner by 60 min. TNFα-mediated GABAAR trafficking represents a novel target for CNS excitotoxicity

    Bladder and Bowel Management in Dogs With Spinal Cord Injury.

    Get PDF
    Spinal cord injury in companion dogs can lead to urinary and fecal incontinence or retention, depending on the severity, and localization of the lesion along the canine nervous system. The bladder and gastrointestinal dysfunction caused by lesions of the autonomic system can be difficult to recognize, interpret and are easily overlooked. Nevertheless, it is crucial to maintain a high degree of awareness of the impact of micturition and defecation disturbances on the animal's condition, welfare and on the owner. The management of these disabilities is all the more challenging that the autonomic nervous system physiology is a complex topic. In this review, we propose to briefly remind the reader the physiology of micturition and defecation in dogs. We then present the bladder and gastrointestinal clinical signs associated with sacral lesions (i.e., the L7-S3 spinal cord segments and nerves) and supra-sacral lesions (i.e., cranial to the L7 spinal cord segment), largely in the context of intervertebral disc herniation. We summarize what is known about the natural recovery of urinary and fecal continence in dogs after spinal cord injury. In particular we review the incidence of urinary tract infection after injury. We finally explore the past and recent literature describing management of urinary and fecal dysfunction in the acute and chronic phase of spinal cord injury. This comprises medical therapies but importantly a number of surgical options, some known for decades such as sacral nerve stimulation, that might spark some interest in the field of spinal cord injury in companion dogs

    Drug-eluting microfibrous patches for the local delivery of rolipram in spinal cord repair

    No full text
    Spinal cord injury (SCI) remains a major challenge for regenerative medicine. Following SCI, axon growth inhibitors and other inflammatory responses prevent functional recovery. Previous studies have demonstrated that rolipram, an anti-inflammatory and cyclic adenosine monophosphate preserving small molecule, improves spinal cord regeneration when delivered systemically. However, more recent studies showed that rolipram has some adverse effects in spinal cord repair. Here, we developed a drug-delivery platform for the local delivery of rolipram into the spinal cord. The potential of drug-eluting microfibrous patches for continuous delivery of high and low-dose rolipram concentrations was characterized in vitro. Following C5 hemisections, athymic rats were treated with patches loaded with low and high doses of rolipram. In general, animals treated with low-dose rolipram experienced greater functional and anatomical recovery relative to all other groups. Outcomes from the high-dose rolipram treatment were similar to those with no treatment. In addition, high-dose treated animals experienced reduced survival rates suggesting that systemic toxicity was reached. With the ability to control the release of drug dosage locally within the spinal cord, drug-eluting microfibrous patches demonstrate the importance of appropriate local release-kinetics of rolipram, proving their usefulness as a therapeutic platform for the study and repair of SCI

    Equine Cervical Pain and Dysfunction: Pathology, Diagnosis and Treatment

    No full text
    Interest in the cervical spine as a cause of pain or dysfunction is increasingly becoming the focus of many equine practitioners. Many affected horses are presented for poor performance, while others will present with dramatic, sometimes dangerous behavior. Understanding and distinguishing the different types of neck pain is a starting point to comprehending how the clinical presentations can vary so greatly. There are many steps needed to systematically evaluate the various tissues of the cervical spine to determine which components are contributing to cervical pain and dysfunction. Osseous structures, soft tissues and the central and the peripheral nervous system may all play a role in these various clinical presentations. After completing the clinical evaluation, several imaging modalities may be implemented to help determine the underlying pathologic processes. There are multiple treatment options available and each must be carefully chosen for an individual horse. Provided is a synopsis of the current knowledge as to different disease processes that can result in cervical pain and dysfunction, diagnostic approaches and treatment strategies. Improving the knowledge in these areas will ideally help to return horses to a state of well-being that can be maintained over time and through the rigors of their job or athletic endeavors

    Equine Cervical Pain and Dysfunction: Pathology, Diagnosis and Treatment

    No full text
    Interest in the cervical spine as a cause of pain or dysfunction is increasingly becoming the focus of many equine practitioners. Many affected horses are presented for poor performance, while others will present with dramatic, sometimes dangerous behavior. Understanding and distinguishing the different types of neck pain is a starting point to comprehending how the clinical presentations can vary so greatly. There are many steps needed to systematically evaluate the various tissues of the cervical spine to determine which components are contributing to cervical pain and dysfunction. Osseous structures, soft tissues and the central and the peripheral nervous system may all play a role in these various clinical presentations. After completing the clinical evaluation, several imaging modalities may be implemented to help determine the underlying pathologic processes. There are multiple treatment options available and each must be carefully chosen for an individual horse. Provided is a synopsis of the current knowledge as to different disease processes that can result in cervical pain and dysfunction, diagnostic approaches and treatment strategies. Improving the knowledge in these areas will ideally help to return horses to a state of well-being that can be maintained over time and through the rigors of their job or athletic endeavors
    corecore